Электрика
Классификация объектов и основные требования, предъявляемые к охране их периметра
Выбор конкретной системы охраны периметра того или иного промышленного объекта является сложной технической задачей, сравнительно легко решаемой лишь в том случае, когда весь периметр охраняемого объекта обнесен надежным и прочным пассивным заграждением из бетона, кирпича или приваренной металлической решетки. В остальных случаях при выборе охранной системы следует учитывать такие факторы, как особенности местности, на которой находится подлежащий охране объект; возможность применения вместо надежных и прочных пассивных заграждений объекта менее прочные заграждения; климатические условия (диапазон температур, вероятность сильного ветра (до 25 м/с), вероятность образования сугробов и их вероятной высоты, обледенение, туман и т.д.); наличие или отсутствие прерываний заграждения для проезда автотранспорта; наличие в непосредственной близости от охраняемого объекта железнодорожных путей, автомагистралей; потребность маскировки системы сигнализации и др.
При выборе системы охраны периметра (кроме перечисленных выше факторов) особое внимание должно быть обращено на требуемую степень защиты охраняемого объекта, зависящую, в первую очередь, от его назначения. Так, степень защиты атомных, тепловых и гидроэлектростанций, нефтегазоперерабатывающих предприятий, аэропортов и других объектов стратегического назначения должна быть исключительно высокой (и потому очень дорогой) — на порядок и даже больше превосходить степень защиты мелких и средних промышленных предприятий, которые могут обойтись намного более простой и потому сравнительно недорогой системой охраны периметра.
Выбор степени защиты конкретного объекта решается индивидуально, и для обоснованного решения этой задачи следует учитывать приведенную в 1 классификацию неподвижных объектов.
Электронный трансформатор как источник питания для активной нагрузки
Однако ЭТ можно применить не только по прямому назначению, но и для питания любой активной нагрузки, не превышающей по мощности параметры ЭТ. Как правило, эти параметры указаны на корпусе прибора. Например, на выход ЭТ можно включать нагревательный элемент, рассчитанный на напряжение 12 В с током потребления не более 1,5 А или автомобильную лампу накаливания с мощностью 12 Вт. Такой ЭТ способен обеспечить питанием нагрузку мощностью 24 Вт (две однотипные автомобильные лампы). Такую нагрузку можно подключать в кратковременном режиме работы (не превышающем нескольких минут).
Схема подключения нагрузки к промышленному ЭТ для низковольтных галогенных ламп показана на рисунке.
«Интеллектуальные» системы охраны периметра промышленных объектов
Охрана периметра объектов самого разного назначения, особенно таких, как атомные, тепловые и гидроэлектростанции, нефтегазоперерабатывающие предприятия, нефтяные терминалы, аэропорты, склады готовой продукции и др., является важнейшей составной частью обеспечения безопасности этих объектов. Характерной особенностью многих из таких объектов является большая протяженность их периметров, а также необходимость охраны не только внешнего периметра, но и периметров отдельных локальных зон и ответственных центров, находящихся внутри этих объектов. Поэтому, приступая к разработке системы охраны того или иного объекта от проникновения посторонних лиц на его территорию, очень важно выбрать оптимальные средства защиты периметра с учетом особенностей месторасположения защищаемого объекта, требуемой вероятности обнаружения пересечения нарушителем границ защищаемой зоны и целого ряда других факторов.
Простой регулятор
Для многих потребителей постоянного тока, таких, как небольшие электродвигатели, лампы накаливания, нагревательные элементы, зачастую с успехом используют PWM (т.е. широтно-импульсные) регуляторы. При этом достигается почти 100% регулировка от минимума до максимума благодаря импульсному режиму регулирования. Потери непосредственно на регулирующем элементе очень малы. Очень часто для таких схем используют интегральный таймер серии 555, но существует и более простое решение. О нем и будет рассказано далее.
На З показана простейшая схема такого регулятора. В ее основе лежит схема мультивибратора, выполненная на двух КМОП-элементах микросхемы С040106. Благодаря двум разнополярно включенным диодам 01 и 02, при регулировке положения движка переменного сопротивления Р1 можно изменять соотношение времени заряда и разряда конденсатора С2 от минимума до максимума. Это приводит к такому же изменению выходного сигнала на выводе 2 ICI-А. Элемент ICI-В служит для исключения влияния транзистора Т1 на стабильность работы микросхемы таймера ICI-А.
Резистор R1 ограничивает выходной ток ICI -В. В то же время этого тока оказывается вполне достаточно для управления транзистором Т1. Это следует учитывать при замене транзистора Т1 типа BD1 39 другим.
Диод D3 целесообразно использовать при индуктивном характере нагрузки, подключаемой к контактам 1-2 колодки К2.
В первоисточнике рекомендовано питать устройство от источника +VCC напряжением + 15 В. Напряжение питания +VCC подается на вывод 14 ИМС, а «корпус» или -VCC — на вывод 7 ИМС.
При использовании указанных на З номиналов радиокомпонентов и напряжении питания 15 В частота генерации ICI-А составляет около 250 Гц, а скважность импульсов регулируется потенциометром Р1 в очень широких пределах — почти от 0 до 100%.
Источник питания радиолюбительских устройств от ПК
Так названо устройство, описанное в [2]. Автор отмечает, что для начинающих радиолюбителей часто возникают проблемы с источником питания для своих экспериментов. Для них требуется качественный регулируемый источник питания, что требует достаточно больших затрат. Гораздо целесообразнее использовать для этих целей то, что уже имеется «под рукой». Часто у любителей или их друзей есть блоки питания от устаревших и неиспользуемых компьютеров. Они имеют, в частности, одно из выходных напряжений + 12 В, и вполне могли бы еще использоваться для различных экспериментов. Остается только предусмотреть возможность регулировки их выходного напряжения.
Схема простейшего регулируемого стабилизатора напряжения показана на 2. Напряжение +1 2 В подается на контакт 1 колодки К1. Через диод D1 это напряжение подается на конденсатор фильтра С1. Вывод 2 разъема К1 соединен с общим проводом схемы.
Светодиод LD1 сигнализирует подачу напряжения на вход устройства. Выключатель S1 позволяет оперативно включать/выключать входное напряжение, не прибегая к коммутации выключателем компьютерного блока питания. Микросхема стабилизатора ICI типа LM317 позволяет легко обеспечить регулировку выходного напряжения схемы от 1,25 В до 9 В потенциометром Р1 при 1 2 В на входе стабилизатора.
При больших токах нагрузки стабилизатора желательно увеличить емкость конденсатора С4.
По описанию [2] диод D2 защищает микросхему стабилизатора от выхода из строя при ошибочном изменении полярности входного напряжения, например, при экспериментах. Это утверждение, по-моему, до
вольно сомнительно, поскольку эту функцию с успехом выполняет диод 01. Скорее, диод 02 способствует разряду конденсаторов С4, С5, а вместе с диодом 03 обеспечивает разряд конденсатора СЗ.
Для большинства микросхем стабилизаторов, аналогичных 1.МЗ 17, выходной ток допускается до 1… 1,5 А, а сами микросхемы имеют защиту от многих экстремальных для них ситуаций. Не следует забывать о необходимости применения радиатора для этих микросхем, если на них рассеивается значительная мощность.
Простой удвоитель напряжения
Этот материал был опубликован в [1]. Как отмечается в статье, в настоящее время все шире используется батарейное питание электронных устройств. Этому способствует миниатюризация радиокомпонентов и снижение энергопотребления. Снижается и необходимое напряжение питания. Если ранее для устройств требовалось, например, 9 В, то в настоящее время преимущественно используется 4,5 В или даже 3 В. Такое напряжение обеспечат два пальчиковых гальванических элемента. В том случае, когда для конкретного устройства требуется более высокое напряжение питания, а по ряду причин одновременно желательно не увеличивать количество питающих устройство элементов питания, целесообразно использовать электронный повышающий преобразователь напряжения.
Промышленность выпускает достаточно много специализированных микросхем для этих целей, но большинство из них еще относительно дороги или дефицитны.
В [ 1 ] приведена схема простого удвоителя напряжения с небольшой выходной мощностью. Его коэффициент полезного действия доходит до 80…90%. Схема преобразователя напряжения показана на 1.
Задающий генератор — мультивибратор выполнен на широко распространенной в практике микросхеме серии 555. В зависимости от производителя перед цифрами серии указано несколько букв. Например, в [1 ] указана микросхема ЫЕ555.
Частота автоколебаний мультивибратора около 10 кГц. Его выходное напряжение управляет состоянием транзисторного ключа Т1. Так, при высоком потенциале напряжения на выходе OUT мультивибратора (вывод 3 ICI) через резистор R3 будет открыт транзистор Т1. При этом конденсатор С2 заряжается через диоды D2 и D1 от источника питания схемы.
При очень маленьком (практически нулевом) напряжении на выводе 3 ICI транзистор Т1 запирается. Это приведет к отпиранию транзистора Т2 током базы через резистор R5. Отрицательный вывод оксидного конденсатора С2 через транзистор Т2 соединяется с положительным полюсом источника питания +NAP. Через диод D3 от конденсатора С2 будет заряжаться конденсатор СЗ.
К сожалению, на диодах D2 и D3 происходит падение напряжения, которое несколько уменьшает выходное напряжение преобразователя, поэтому выходное напряжение схемы будет меньше, чем удвоенное напряжение источника питания. Если вместо указанных на схеме диодов типа 1 N407 (D1-D3) использовать, например, диоды Шотки, то потери напряжения на D2 и D3 уменьшатся почти вдвое.
В [1] приводится рисунок печатной платы устройства, но при размерах 50×28 мм она двухсторонняя. Изготовить такую плату в любительских условиях очень сложно, поэтому этот рисунок в настоящей статье не дублируется.
В заключение хотелось бы отметить, что в оригинале статьи [1] напряжение питания NAP не приведено, но подчеркивается, что максимальное напряжение питания микросхемы серии 555, как правило, не должно превышать 15 В. Выходной ток схемы (ток нагрузки) от нескольких миллиампер до нескольких десятков миллиампер.
Не следует забывать, что с увеличением потребляемого нагрузкой тока (выходного тока устройства) следует увеличить и емкость конденсаторов С2, СЗ.
В заключение хотелось бы отметить, что данная схема заинтересовала автора этих строк в первую очередь способом управления транзистором Т2 [1], при котором эмиттер транзистора имеет связь с отрицательным полюсом источника питания через конденсатор С2, т.е. гальванической связи нет. Кроме того, интересно было бы посмотреть осциллографом форму напряжения на конденсаторе С2 с точки зрения изменения его полярности, если таковая имеется. Весьма интересно, если схема работает. Но об этом будут судить читатели.
Импульсные трансформаторы ТМС-21 или ТС2-1.
Возможно применение и других согласующих трансформаторов из модулей строчной развертки старых полупроводниковых отечественных телевизоров, например ТМС-20, ТМС-45. При этом потребуется скорректировать емкость конденсатора С8 для получения максимального КПД при номинальном токе нагрузки, а также будут получены другие выходные напряжения.
Дроссели LI, L2 использованы малогабаритные промышленного изготовления. Обмотка дросселя L2 должна быть рассчитана на ток не менее 1…2 А и иметь сопротивление не более 20 мОм. Для защиты преобразователей от перегрузок целесообразно использовать полимерные самовосстанавливающиеся предохранители.
Старые отечественные телевизоры, благодаря своей блочно-модульной конструкции и примененным схемным решениям, — это кладезь бесплатных «полезностей» для домашнего мастера, причем неиссякаемый в ближайшие лет 10…20.
Несколько простых устройств из зарубежных журналов
В нашей новой рубрике мы расскажем о нескольких простых устройствах, описание которых было опубликовано в журнале «Amaterske RADIO» (Чехия).
Специализированные журналы всегда были основным источником информации для электриков. Однако, если ранее в нашей стране можно было относительно просто подписаться и регулярно получать как отечественные периодические издания, так и многие зарубежные, то в настоящее время, к сожалению, ситуация изменилась в худшую сторону. Сейчас нет подписки на чешский журнал «Amaterske RADIO». Похоже, что болгарский журнал «Радио, телевизия, електроника» перестал выходить примерно с 2003 года.
В этой ситуации в лучшем положении оказались владельцы персональных компьютеров. Например, сейчас можно официально через редакцию купить диск публикаций «Электрика», последние диски журналов Чехии. На радиорынках есть диски журналов России, Беларуси, некоторых англоязычных изданий.
Для тех, кто предпочитает бумажную версию журналов, и предназначен этот цикл кратких публикаций, скорее, обзор наиболее простых и интересных статей из зарубежной периодической электротехнической и радиотехнической литературы. Сразу следует оговориться, что часто в литературе появляются сомнительные, с точки зрения автора этой статьи, материалы. От ошибок никто не застрахован. Может быть, что ошибки в оригинале публикации и нет. К сожалению, нет возможности экспериментально проверять достоверность всех материалов, опубликованных в иностранной литературе, но предупредить читателей о своих подозрениях — обязанность автора дайджеста. Будет правильно, если через редакцию «Электрика» читатели поделятся своими отзывами об опубликованных материалах. Редакция со своей стороны обобщит и опубликует эти отзывы.