Сравнение приборов

Сравнение приборов

Хороший заводской многопредельный омметр типа М41070/1 имеет напряжение питания всего 1,5 В. Однако от напряжения 1,5 В не светятся светодиоды АЛ307 и любые их аналоги, распространенные сегодня на наших рынках. Важнее иметь устройство для более серьезной проверки мощных транзисторов, но такие серийные приборы достаточно дороги.

В результате многочисленных измерений было обнаружено, что выявить скрытый дефект («утечку») в мощном транзисторе можно, если увеличивать в омметре напряжение питания.

Омметр М41 07/ 1, к примеру, из 1 0 штук тестируемых КТ8102 не выявил ни одного некондиционного экземпляра, хотя часть из них была с дефектами.

Вывод следующий: для отыскания утечек в переходах транзисторов следует повышать питание схем, тестирующих эти транзисторы, естественно, не забывая при этом ограничивать токи через проверяемые транзисторы. Только так можно получить проверку методом неразрушающего контроля.

Вот почему после омметра М41070/1 в результате проверки этих же десяти транзисторов с помощью предлагаемого прибора обнаружено три экземпляра с утечками перехода К-Э. Причем при подключении к прибо- РУ переходы «пропускали» ток в обе стороны. Конечно, эти три экземпляра КТ8102 были отбракованы. К сожалению, бракованных транзисторов типов КТ81 01 и особенно КТ81 02, встречается очень много.

Особенности прибора

Данный прибор кажется чрезвычайно простым. Тем не менее, имеются в его использовании свои нюансы. Некоторые важные вопросы по его схеме следует рас

смотреть подробнее. Первоначально прибор был собран по схеме 1. Прибор имеет два диапазона для измерения сопротивлений: «Ом» и «кОм».

В показанном на схеме отжатом положении выключателя хорошо определяется даже такое сопротивление, как 1 МОм. Кстати, величину такого сопротивления увидеть заводским прибором М41 070/1 проблематично, при такой большой шкале М41070/1. А ведь штатная головка М41070/1 отклоняется на всю шкалу уже при токе всего лишь 50 мкА. Несколько слов все же необходимо сказать о приборе М41070/1. В целом был бы неплохой многопредельный омметр, но его завод- производитель сделал так, что пользоваться прибором крайне неудобно.

Простой пробник полупроводниковых приборов

Простой пробник полупроводниковых приборов

Прибор, внешний вид которого показан на фото в начале статьи, снова стал часто использоваться, как это было раньше, несколько лет тому назад. Схема данного измерительного прибора показана на 1.

Данный прибор специально предназначался для очень быстрой проверки диодов и транзисторов в условиях радиорынка. Прибор позволяет также проверять многие типы светодиодов: те, которые светятся при напряжении 3 В. При этом используется метод неразрушающего контроля, т.к. ток через светодиоды всегда ограничен на безопасном для них уровне. Поскольку в приборе имеется два поддиапазона для оценки измеряемых сопротивлений, то его функциональные возможности значительно расширяются.

Главная цель разработки данного прибора-пробника — экспресс-проверка р-п-переходов мощных транзисторов, среди которых прибор позволяет обнаруживать массу некондиционных.

Прибор портативный и малогабаритный, очень простой в обращении, надежный в работе и экономичный в плане энергопотребления элементов питания. В качестве элементов питания используются два последовательно соединенных элемента типоразмера АА.

В результате практических экспериментов было отмечено, что дефекты мощных транзисторов легче обнаружить при напряжении питании 3 В, чем при напряжении питании 1,5 В.

Простые измерительные приборы электрика и их использование

Простые измерительные приборы электрика и их использование

Кому приходится приобретать комплектующие, особенно б/у, на радиорынках, тот понимает всю актуальность вопросов, связанных с проверкой этих деталей. Даже среди новых комплектующих (например, диодов или светодиодов) встречаются как полностью бракованные, так и некондиционные.

Проблема в том, что дефекты полупроводниковых приборов разнообразны. Иногда сам продавец предупреждает об известных ему дефектах. Но «идеализированные» комплектующие нужны не всегда. Например, автор нередко приобретал мощные транзисторы. При этом приходилось покупать десяток экземпляров (и не один) с заниженным значением 11кэ макс. Автору нужны были мощные транзисторы для источников питания (ИП) нескольких исполнений (0…15 В, 0…30 В, 0…50 В).

Когда обнаруживалось, что икэ макс приобретаемых КТ81 01 или КТ81 02 не превышал 100 В, то продавец комплектующих шел навстречу, существенно снижая цены на эти транзисторы. Встречались и имеющие икэ макс=^0 В экземпляры этих замечательных транзисторов. Их тоже с успехом эксплуатируют в ИП на напряжение 12 В (0…12 В). Зная о том, как отличить ненадежные экземпляры от кондиционных, их спокойно применяли. Естественно, ИП ставили на прогон, с тем

чтобы полностью убедиться, что КТ8101 и КТ8102 не подведут. Даже специальные стенды собирались для преднамеренных «мучительных» испытаний «подозрительных» экземпляров КТ8101 и КТ8102. Что удивляло и озадачивало, так это факт выхода из строя даже экземпляров из той партии приобретенных КТ8101 и КТКТ8102, которые считались вполне кондиционными и к которым не было претензий по величине икэ макс=1 60…200 В. Мы подходим к тому, что проверять транзисторы надо по нескольким параметрам. Например, приборами-пробниками, предназначенными для быстрой отбраковки тех экземпляров полупроводниковых приборов, которые явно не подходили.

К сожалению, среди КТ8101 и КТ8102 много бракованных, причем настолько, что их даже в качестве умощ- нения стабилитронов не применишь. То есть, к примеру, используя стабилитрон серии Д814 или Д81 6 совместно с «некондиционным» КТ8101 или КТ8102, можно получить фактически 100 ваттный и более мощный аналог такого стабилитрона. Это только один из примеров применения некондиционных мощных транзисторов по величине 11кэ макс. Огромные утечки, а то и вовсе пробитые переходы некоторых экземпляров КТ8101 или КТ8102 часто не позволят и здесь их применить.

Пока цены на зарубежные транзисторы 25А1302, 25С3281, 2БС2922 и т.п. были приемлемыми, ими можно было широко пользоваться, т.е. создавать свои конструкции на этих транзисторах. В связи с ростом цен опять стало актуально повсеместное использование более дешевых КТ8101 и КТ8102. Исключение составляют ремонты дорогих аудиоусилителей.

Конструкция и детали

Конструкция и детали

Шунт можно применить и на 5 А. В этом случае сопротивление резистора Р1 надо увеличить вдвое. Можно включить вместо шунта некалиброванное сопротивление, оно должно иметь сечение проводника, допускающее ток до 10 А без заметного нагрева. При такой замене Р1 придется подобрать. Оптрон АОТ128 с любым буквенным индексом.

Была проверена работа схемы ограничения тока также с операционными усилителями К1401УД2 и К553УД2. С последним результат неудовлетворитель

ный. Транзистор УТ1 типа КТЗ 1 02 или КТ342 с любым буквенным индексом. Резисторы любые. Реле К1 РЭС48 паспорт 4.590.202. Можно применить другое реле, подходящее по рабочему напряжению и току коммутации. Фильтр питания — от телевизора ЗУСЦТ (модуль А12) без переделок, на своей плате. Блок предохранителей также оставлен в цепи питания 220 В/50 Гц.

Узел ограничения тока, реле К1 и диод УР1 смонтированы на плате соединений телевизора. С платы удалены перемычки. Плата разрезана по верхнему краю разъемов Х5, ХЗ. «Крылья» укорочены. На оставшейся части установлены детали. Монтаж «псевдо- печатный».

Настройка

К выходу подключают нагрузку 15 Ом. Соединяют перемычками контакты реле и включают модуль в сеть. Резистором 12 на модуле А4 устанавливают напряжение на нагрузке 1 7 В. Проверяют, в каких пределах оно изменяется при изменении 1р от наибольшего значения до минимального. Напряжение на нагрузке должно изменяться от 1 7 до 1 2 В. Если напряжение в эти пределы не укладывается, подбирают резистор 13.

Далее нагружают модуль сопротивлением 2…2,5 Ом или на разряженную аккумуляторную батарею. Проверяют, на каком уровне ограничен ток. Если он более 6,5 А, подбирают резистор к! в узле ограничения тока.

Важно!

Необходимо следить за исправностью последовательной цепи 13 — 1р — база УТ1. Если она будет разорвана, выйдут из строя транзистор УТ4 и тиристор модуля МП3-3.

Доработка модуля МПЗ-З

Доработка модуля МПЗ-З

С платы модуля снимают детали стабилизатора напряжения + 12 В: транзисторы VT5-VT7, резисторы R25-R27, конденсаторы С31, С32 и диод VD16, конденсатор С26, резисторы R22 и R28, лампу НИ, дроссели L3 и L2. Диоды VD12-VD15 заменяют КД213 с любым буквенным индексом, т.к. максимальный прямой ток диода КД226 равен 1,7 А, они работали бы на пределе. Диоды КД213 допускают прямой ток 10 А и имеют большую площадь, поэтому лучше охлаждаются. Установлено, что при замене диода КД226Б диодом КД213А ток в нагрузке увеличился с 4,2 А до 5 А. Предположительно потому, что последние имеют лучшие частотные свойства.

Надо изменить подключение выпрямителей в соответствии со схемой. В результате получится работа четырех выпрямителей в параллель на одну на- грузку.

Обмотка между выводами 12 и 18 содержит на один виток больше остальных. Это сделано для того, чтобы напряжение питания операционного усилителя DA1 было больше напряжения на его входах. Для того чтобы ток, отдаваемый этой обмоткой, был равен току трех остальных, в цепь последовательно с диодом VD14 включен резистор Rfl.

Для регулировки выходного напряжения блока (и тока заряда) в узел стабилизации выходного напряжения модуля последовательно с R2 включен переменный резистор Rp номиналом 2,2 кОм (на 2 оба резистора показаны как R2). Он позволяет изменять напря-

жение на базе транзистора УТ1. При увеличении его сопротивления выходное напряжение модуля увеличивается. Сопротивление резистора R3 в цепи базы транзистора VI 1 модуля МПЗ уменьшено до 4,3 кОм.

ГОСТ 9590 — 84Е устанавливает режимы заряда стартерных свинцово-кислотных аккумуляторных батарей. Один из них — заряд постоянным напряжением. При этом на батарею подают от источника зарядного тока питание из расчета 2,63 В на аккумулятор, 15,78 В на батарею типа бСТхх. Ток при этом устанавливается автоматически. Его величина зависит от емкости батареи и того, насколько она разряжена и может достигать 80% от емкости. По мере накопления в батарее электрического заряда ток уменьшается.

Режим заряда постоянным током проходит в две ступени. Первая ступень — током 1/10 емкости до достижения напряжения 14,4 В. После этого вторая ступень — током 1 /20 емкости до полного заряда.

Поддержание неизменного тока заряда осуществляет узел ограничения тока. Это индикатор предельного тока [2], который несколько изменен. Датчик тока — амперметр на 1 0 А со стандартным шунтом на 75 мВ. Амперметр используется по прямому назначению, для контроля тока заряда. С шунта снимается напряжение на вход операционного усилителя. Это напряжение усиливается и открывает транзистор УТ1. Ток коллектора транзистора протекает через диод оптопары 111 и создает на резисторе Rl падение напряжения, направленное встречно с напряжением на Rш. Ток коллектора

УТ1 такой, что напряжение на резисторе 1^1 всегда равно напряжению на При увеличении тока нагрузки увеличивается ток коллектора VII и ток диода оптрона. Транзистор оптрона открывается и шунтирует цепь РЗРр, параллельно которой он подключен. Если ток превышает установленное значение, общее сопротивление этой цепи уменьшается настолько, что уменьшает ток заряда батареи. Ток уменьшается, оптрон прикрывается. Происходит автоматическое поддержание постоянной величины зарядного тока. При номиналах сопротивлений Рш и Ш, указанных на схеме, ток ограничивается на уровне 6,25 А.

Реле К1 и диод Уй1 защищают модуль от включения при неправильном подключении заряжаемой батареи или ее отсутствии. Нормально разомкнутые контакты реле К1 включают в разрыв кабеля 220 В от модуля А1 2 к модулю А4.

Перемотка трансформатора

Перемотка трансформатора

Распаять соединение короткозамкнутого медного витка и снять его. Перемотка трансформатора проведена без разборки магнитопровода. Для того чтобы о его боковые стержни не повредить обмоточный провод, их закрывают полосками картона и закрепляют эти полоски клеем. После этого аккуратно снимают изолирующие прокладки и сматывают провод обмоток, записывая номера выводов и число витков каждой (для проверки). Позже, при намотке, важно не перепутать направление обмоток. Для нормальной работы однотактного обратноходового преобразователя это непременное условие. Снимают половину первичной обмотки 19-1 1, она находится сверху, обмотки 6-8 и 8-18. Обмотку 12-18 и все, которые ниже, не трогают. Складывают вдвое провод от обмотки 6-8 и наматывают две новые обмотки по 1 1 витков каждая, между выводами 6-14 и 8-4.

Провод укладывают аккуратно, не скручивают. На каркасе он должен лежать в один слой. Направление от выводов должно быть подобно направлению провода от выводов обмоток 10-20. Отличие приведет к разнице тока в обмотках при параллельной работе. Между обмотками кладут снятые ранее изолирующие прокладки, желательно каждую на свое место. Последней наматывают вторую половину сетевой обмотки 1 1-19, изолируют ее и устанавливают на место короткозамкнутый виток.

Опрос

Какая услуга Вам необходима?

Показать результаты

Загрузка ... Загрузка ...
Октябрь 2018
Пн Вт Ср Чт Пт Сб Вс
« Сен    
1234567
891011121314
15161718192021
22232425262728
293031